Dynamic Offloading for Multiuser Muti-CAP MEC Networks: A Deep Reinforcement Learning Approach
نویسندگان
چکیده
In this paper, we study a multiuser mobile edge computing (MEC) network, where tasks from users can be partially offloaded to multiple computational access points (CAPs). We consider practical cases task characteristics and capability at the CAPs may time-varying, thus, creating dynamic offloading problem. To deal with problem, first formulate it as Markov decision process (MDP), then introduce state action spaces. further design novel strategy based on deep Q network (DQN), dynamically fine-tune proportion in order ensure system performance measured by latency energy consumption. Simulation results are finally presented verify advantages of proposed DQN-based over conventional ones.
منابع مشابه
A Deep Reinforcement Learning Based Approach for Cost- and Energy-Aware Multi-Flow Mobile Data Offloading
With the rapid increase in demand for mobile data, mobile network operators are trying to expand wireless network capacity by deploying wireless local area network (LAN) hotspots on to which they can offload their mobile traffic. However, these network-centric methods usually do not fulfill the interests of mobile users (MUs). Taking into consideration many issues such as different applications...
متن کاملDeep Reinforcement Learning for Dynamic Multichannel Access in Wireless Networks
We consider a dynamic multichannel access problem, where multiple correlated channels follow an unknown joint Markov model. A user at each time slot selects a channel to transmit data and receives a reward based on the success or failure of the transmission. The objective is to find a policy that maximizes the expected long-term reward. The problem is formulated as a partially observable Markov...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملDeep Reinforcement Learning for Dynamic Multichannel Access
We consider the problem of dynamic multichannel access in a Wireless Sensor Network (WSN) containing N correlated channels, where the states of these channels follow a joint Markov model. A user at each time slot selects a channel to transmit a packet and receives a reward based on the success or failure of the transmission, which is dictated by the state of the selected channel. The objective ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Vehicular Technology
سال: 2021
ISSN: ['0018-9545', '1939-9359']
DOI: https://doi.org/10.1109/tvt.2021.3058995